
Linear in the parameters regression

Carl Edward Rasmussen

June 23rd, 2016

Carl Edward Rasmussen Linear in the parameters regression June 23rd, 2016 1 / 12



How do we fit this dataset?
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• Dataset D = {xi,yi}Ni=1 of N pairs of inputs xi and targets yi.
This data can for example be measurements in an experiment.

• Goal: predict target y∗ associated to any arbitrary input x∗.
This is known a as a regression task in machine learning.

• Note: Here the inputs are scalars, we have a single input feature.
Inputs to regression tasks are often vectors of multiple input features.
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Model of the data
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• In order to predict at a new x∗ we need to postulate a model of the data.
We will estimate y∗ with f(x∗).

• But what is f(x)? Example: a polynomial

fw(x) = w0 +w1 x+w2 x
2 +w3 x

3 + . . . +wM xM

The wj are the weights of the polynomial, the parameters of the model.
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Model of the data. Example: polynomials of degree M
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Model structure and model parameters
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• Should we choose a polynomial? model structure
• What degree should we choose for the polynomial? model structure
• For a given degree, how do we choose the weights? model parameters
• For now, let find the single “best” polynomial: degree and weights.
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Fitting model parameters: the least squares approach
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• Idea: measure the quality of the fit to the training data.
• For each training point, measure the squared error e2

i = (yi − f(xi))
2.

• Find the parameters that minimise the sum of squared errors:

E(w) =

N∑
i=1

e2
i

fw(x) is a function of the parameter vector w = [w0,w1, . . . ,wM]>.
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Least squares in detail. (1) Notation

Some notation: training targets y, predictions f and errors e.
• y = [y1, . . . ,yN]> is a vector that stacks the N training targets.
• f = [fw(x1), . . . , fw(xN)]> stacks fw(x) evaluated at the N training inputs.
• e = y − f is the vector of training prediction errors.

The sum of squared errors is therefore given by

E(w) = ‖e‖2 = e>e = (y − f)>(y − f)

More notation: weights w, basis functions φj(x) and matrix Φ.
• w = [w0,w1, . . . ,wM]> stacks the M+ 1 model weights.
• φj(x) = x

j is a basis function of our linear in the parameters model.

fw(x) = w0 1 +w1 x+w2 x
2 + . . . +wM xM =

M∑
j=0

wjφj(x)

• Φij = φj(xi) allows us to write f = Φw.
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Least squares in detail. (2) Solution

A Gradient View. The sum of squared errors is a convex function of w:

E(w) = (y − f)>(y − f) = (y −Φw)>(y −Φw)

The gradient with respect to the weights is:

∂E(w)

∂w
= 2Φ>(y −Φw) = 2Φ> y − 2Φ>Φw

The weight vector ŵ that sets the gradient to zero minimises E(w):

ŵ = (Φ>Φ)−1 Φ> y

A Geometrical View. This is the matrix form of the Normal equations.
• The vector of training targets y lives in an N-dimensional vector space.
• The vector of training predictions f lives in the same space, but it is

constrained to being generated by the M+ 1 columns of matrix Φ.
• The error vector e is minimal if it is orthogonal to all columns of Φ:

Φ> e = 0 ⇐⇒ Φ> (y −Φw) = 0

Carl Edward Rasmussen Linear in the parameters regression June 23rd, 2016 8 / 12



Least squares fit for polynomials of degree 0 to 17
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Have we solved the problem?
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• Ok, so have we solved the problem?
• What do we think y∗ is for x∗ = −0.25? And for x∗ = 2?
• If M is large enough, we can find a model that fits the data
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Overfitting
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• All the models in the figure are polynomials of degree 17 (18 weights).
• All perfectly fit the 17 training points, plus any desired y∗ at x∗ = −0.25.
• We have not solved the problem. Key missing ingredient: assumptions!
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Some open questions

• Do we think that all models are equally probable... before we see any data?

What does the probability of a model even mean?

• Do we need to choose a single “best” model or can we consider several?

We need a framework to answer such questions.

• Perhaps our training targets are contaminated with noise. What to do?

This question is a bit easier, we will start here.
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