Linear in the parameters regression

Carl Edward Rasmussen

June 23rd, 2016

How do we fit this dataset?

- Dataset $\mathcal{D}=\left\{x_{i}, y_{i}\right\}_{i=1}^{N}$ of N pairs of inputs x_{i} and targets y_{i}. This data can for example be measurements in an experiment.
- Goal: predict target y_{*} associated to any arbitrary input x_{*}. This is known a as a regression task in machine learning.
- Note: Here the inputs are scalars, we have a single input feature. Inputs to regression tasks are often vectors of multiple input features.

Model of the data

- In order to predict at a new x_{*} we need to postulate a model of the data. We will estimate y_{*} with $f\left(x_{*}\right)$.
- But what is $f(x)$? Example: a polynomial

$$
f_{w}(x)=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+\ldots+w_{M} x^{M}
$$

The w_{j} are the weights of the polynomial, the parameters of the model.

Model of the data. Example: polynomials of degree M

Model structure and model parameters

- Should we choose a polynomial?
- What degree should we choose for the polynomial?
- For a given degree, how do we choose the weights?
model structure model structure model parameters
- For now, let find the single "best" polynomial: degree and weights.

Fitting model parameters: the least squares approach

- Idea: measure the quality of the fit to the training data.
- For each training point, measure the squared error $e_{i}^{2}=\left(y_{i}-f\left(x_{i}\right)\right)^{2}$.
- Find the parameters that minimise the sum of squared errors:

$$
E(\mathbf{w})=\sum_{i=1}^{N} e_{i}^{2}
$$

$f_{w}(x)$ is a function of the parameter vector $\mathbf{w}=\left[w_{0}, w_{1}, \ldots, w_{M}\right]^{\top}$.

Least squares in detail. (1) Notation

Some notation: training targets \mathbf{y}, predictions \mathbf{f} and errors \mathbf{e}.

- $\mathbf{y}=\left[y_{1}, \ldots, y_{N}\right]^{\top}$ is a vector that stacks the N training targets.
- $\mathbf{f}=\left[\mathrm{f}_{\mathrm{w}}\left(\mathrm{x}_{1}\right), \ldots, \mathrm{f}_{\mathrm{w}}\left(\mathrm{x}_{\mathrm{N}}\right)\right]^{\top}$ stacks $\mathrm{f}_{\mathrm{w}}(\mathrm{x})$ evaluated at the N training inputs.
- $\mathbf{e}=\mathbf{y}-\mathbf{f}$ is the vector of training prediction errors.

The sum of squared errors is therefore given by

$$
E(\mathbf{w})=\|e\|^{2}=e^{\top} e=(\mathbf{y}-\mathbf{f})^{\top}(\mathbf{y}-\mathbf{f})
$$

More notation: weights \mathbf{w}, basis functions $\phi_{j}(x)$ and matrix Φ.

- $\mathbf{w}=\left[w_{0}, w_{1}, \ldots, w_{M}\right]^{\top}$ stacks the $M+1$ model weights.
- $\phi_{j}(x)=x^{j}$ is a basis function of our linear in the parameters model.

$$
f_{w}(x)=w_{0} 1+w_{1} x+w_{2} x^{2}+\ldots+w_{M} x^{M}=\sum_{j=0}^{M} w_{j} \phi_{j}(x)
$$

- $\boldsymbol{\Phi}_{i j}=\phi_{j}\left(\mathrm{x}_{\mathrm{i}}\right)$ allows us to write $\mathbf{f}=\boldsymbol{\Phi} \mathbf{w}$.

Least squares in detail. (2) Solution

A Gradient View. The sum of squared errors is a convex function of \mathbf{w} :

$$
\mathrm{E}(\mathbf{w})=(\mathbf{y}-\mathbf{f})^{\top}(\mathbf{y}-\mathbf{f})=(\mathbf{y}-\boldsymbol{\Phi} \mathbf{w})^{\top}(\mathbf{y}-\mathbf{\Phi} \mathbf{w})
$$

The gradient with respect to the weights is:

$$
\frac{\partial \mathrm{E}(\mathbf{w})}{\partial \mathbf{w}}=2 \Phi^{\top}(\mathbf{y}-\Phi \mathbf{w})=2 \Phi^{\top} \mathbf{y}-2 \Phi^{\top} \Phi \mathbf{w}
$$

The weight vector $\hat{\mathbf{w}}$ that sets the gradient to zero minimises $\mathrm{E}(\mathbf{w})$:

$$
\hat{\mathbf{w}}=\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\top} \mathbf{y}
$$

A Geometrical View. This is the matrix form of the Normal equations.

- The vector of training targets y lives in an N -dimensional vector space.
- The vector of training predictions \mathbf{f} lives in the same space, but it is constrained to being generated by the $M+1$ columns of matrix Φ.
- The error vector e is minimal if it is orthogonal to all columns of $\boldsymbol{\Phi}$:

$$
\Phi^{\top} \mathbf{e}=0 \Longleftrightarrow \Phi^{\top}(\mathbf{y}-\Phi \mathbf{w})=0
$$

Least squares fit for polynomials of degree 0 to 17

Have we solved the problem?

- Ok, so have we solved the problem?
- What do we think y_{*} is for $x_{*}=-0.25$? And for $x_{*}=2$?
- If M is large enough, we can find a model that fits the data

Overfitting

- All the models in the figure are polynomials of degree 17 (18 weights).
- All perfectly fit the 17 training points, plus any desired y_{*} at $x_{*}=-0.25$.
- We have not solved the problem. Key missing ingredient: assumptions!

Some open questions

- Do we think that all models are equally probable... before we see any data?

What does the probability of a model even mean?

- Do we need to choose a single "best" model or can we consider several?

We need a framework to answer such questions.

- Perhaps our training targets are contaminated with noise. What to do?

This question is a bit easier, we will start here.

